Interaction of human serum albumin with the electrophilic metabolite 1-O-gemfibrozil-beta-D-glucuronide.
نویسندگان
چکیده
Acyl glucuronides are electrophilic metabolites that are readily hydrolyzed, undergo intramolecular rearrangement, and bind covalently to endogenous proteins. Gemfibrozil is a fibrate lipid-lowering agent that is extensively metabolized to an acyl glucuronide conjugate in humans. The aims of this study were to examine the interactions of 1-O-gemfibrozil-beta-D-glucuronide with human serum albumin. The degradation of 1-O-gemfibrozil-beta-D-glucuronide (approximately 200 microM) was examined in vitro during incubations at 37 degrees C with phosphate buffer (pH 7.4 or 9.0), solutions of human serum albumin (pH 7.4), or fresh human plasma (pH 7.4). The effects of diazepam, oxyphenbutazone, and gemfibrozil on the degradation of 1-O-gemfibrozil-beta-D-glucuronide, and its reversible binding to albumin were also studied. A pilot in vivo study was performed on two patient volunteers administered 1 g/day p.o. gemfibrozil. 1-O-Gemfibrozil-beta-D-glucuronide was unstable, with degradation half-lives in buffer of 4.1 hr and 44 hr at pH 9.0 and 7.4, respectively; and 8.5 hr and 5.5 hr in pH 7.4 solutions of human serum albumin or fresh plasma, respectively. Degradation was dependent on pH and the presence of albumin, which seemed to accelerate the intramolecular rearrangement and hydrolysis of the conjugate. 1-O-Gemfibrozil-beta-D-glucuronide was highly reversibly bound to albumin, with a mean unbound fraction of 0.028, and its degradation seemed to be related to the degree of reversible binding. Hydrolysis and covalent binding were associated with the site II binding domain on albumin, because only diazepam inhibited these reactions. However, intramolecular rearrangement was increased when binding to the site I domain was inhibited. Covalent binding was also detected in vivo to human plasma proteins. The half-life of the gemfibrozil-protein adducts was 2.5-3 days. Albumin plays an important role in the disposition of acyl glucuronides by acting as: i) a transporter protein; ii) a potential catalyst for their degradation and, therefore, clearance; and iii) a target for covalent adduct formation.
منابع مشابه
Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions.
Gemfibrozil more potently inhibits CYP2C9 than CYP2C8 in vitro, and yet the opposite inhibitory potency is observed in the clinic. To investigate this apparent paradox, we evaluated both gemfibrozil and its major metabolite, an acyl-glucuronide (gemfibrozil 1-O-beta-glucuronide) as direct-acting and metabolism-dependent inhibitors of the major drug-metabolizing cytochrome P450 enzymes (CYP1A2, ...
متن کاملHepatic disposition of the acyl glucuronide1-O-gemfibrozil-beta-D-glucuronide: effects of dibromosulfophthalein on membrane transport and aglycone formation.
The liver plays an important role in the disposition of acyl glucuronides by determining their extent of formation, biliary excretion, and efflux into blood. Thus, both intrahepatic and extrahepatic exposure to these reactive polar conjugates depends on the efficiency of hepatic transport mechanisms, which may be shared with other nonbile acid organic anions. Using the isolated perfused rat liv...
متن کاملAccelerated Communication GLUCURONIDATION CONVERTS GEMFIBROZIL TO A POTENT, METABOLISM- DEPENDENT INHIBITOR OF CYP2C8: IMPLICATIONS FOR DRUG-DRUG INTERACTIONS
Gemfibrozil more potently inhibits CYP2C9 than CYP2C8 in vitro, and yet the opposite inhibitory potency is observed in the clinic. To investigate this apparent paradox, we evaluated both gemfibrozil and its major metabolite, an acyl-glucuronide (gemfibrozil 1-Oglucuronide) as direct-acting and metabolism-dependent inhibitors of the major drug-metabolizing cytochrome P450 enzymes (CYP1A2, 2B6, 2...
متن کاملHepatic disposition of the acyl glucuronide 1-O-gemfibrozil-beta-D-glucuronide: effects of clofibric acid, acetaminophen, and acetaminophen glucuronide.
Glucuronidation of carboxylic acid compounds results in the formation of electrophilic acyl glucuronides. Because of their polarity, carrier-mediated hepatic transport systems play an important role in determining both intra- and extrahepatic exposure to these reactive conjugates. We have previously shown that the hepatic membrane transport of 1-O-gemfibrozil-beta-D-glucuronide (GG) is carrier-...
متن کاملGemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil.
A serious pharmacokinetic interaction between cerivastatin (CER) and gemfibrozil (GEM) has been reported. In the present study, we examined the inhibitory effects of GEM and its metabolites, M3 and gemfibrozil 1-O-beta-glucuronide (GEM-1-O-glu), on the uptake of CER by human organic anion transporting polypeptide 2 (OATP2)-expressing cells and its metabolism in cytochrome P450 expression system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 25 1 شماره
صفحات -
تاریخ انتشار 1997